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1 Document Overview

This document describes the theoretical basis and implementation of the Sentinel-
5P Ocean Color (S5POC) level-2 TROPOMI products. Section 2 describes the
TROPOMI instrument. Sentinel-5P Ocean Color (S5POC) level-2 TROPOMI
products include the diffuse attenuation coefficients (Kd) at the UV-AB, UV-A
and short blue wavelength range based on (Oelker et al., 2022b). These prod-
ucts are introduced in section 3. A detailed description of the S5POC Kd level
2 product algorithm follows in section 4. Feasibility of an operational processing
of the S5POC products is discussed in section 5. Section 6 presents the methods
used to calculate uncertainties for the products. Validation with in situ data is
summed up in section 7.

2 TROPOMI instrument

The satellite Sentinel-5 Precursor (S5P) hosts the Tropospheric Monitoring In-
strument (TROPOMI) (Veefkind et al., 2012). It is in a low Earth orbit and its
standard level 2 products provide daily global measurements of atmospheric trace
gases and aerosols. The satellite was launched in October 2017. Local solar time
at ascending node is 13:30. TROPOMI measures backscattered radiances at a
spatial resolution of 3.5km by 5.5km (until 5 August 2019 at 3.5km by 7 km)
at nadir. Once per day the solar irradiance is recorded. Measurements are taken
by a charge-coupled device (CCD) sensor at a swath width of 2600 km providing
daily global coverage. TROPOMI has spectral bands in the ultraviolet (UV), the
visible (VIS), near-infrared (NIR), and the shortwave infrared (SWIR). Relevant
for developing ocean color products are band 3 (UV) from 310 nm to 405 nm,
and band 4 (VIS) from 405 nm to 500 nm. The spectral resolution is 0.55 nm for
bands 3 and 4.

3 Introduction to TROPOMI diffuse attenuation
coefficient products

Traditionally, ocean color products are derived from multispectral sensors that
record the backscattered radiance at 8 to 21 bands with a width of 10 to 20 nm
in the VIS and NIR. Current multispectral sensors with daily global coverage
have a spatial resolution below 500 m. Most ocean color retrievals are based on
the water-leaving radiance which is acquired from the backscattered radiance by
applying an atmospheric correction. The broad spectral resolution and limited
number of bands of multispectral sensors limits the discrimination of the optical

12
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imprints of different water constituents. Hyperspectral ocean color sensors that
continuously record the backscattered radiance at a spectral resolution of 5nm
or lower offer a new level for observing the ocean from space. Upcoming hy-
perspectral ocean color sensors such as the Plankton, Aerosol, Cloud and ocean
Ecosystem (PACE) mission (https://pace.oceansciences.org/mission.htm) target
a better spectral resolution of 5nm which will allow for a better understanding
of the phytoplankton ecology.

Atmospheric sensors measure the backscattered radiance at much higher
spectral resolution, around 0.5nm in the UV to NIR bands. It has been shown
that measurements from these kind of sensors can be exploited to successfully
retrieve phytoplankton functional types (Bracher et al., 2009; Sadeghi et al.,
2012), light availability (Dinter et al., 2015), diffuse attenuation (Dinter et al.,
2015; Oelker et al., 2019, 2022b), and sun-induced marine fluorescence (Wolanin
et al., 2015a; Joiner & Vasilkov, 2006). Spatial resolution of atmospheric sen-
sors has advanced. TROPOMI sets a new record in spatial resolution with 3.5 km
by 5.5km (3.5km by 5.5km until 5 Aug 2019) and correspondingly this is the
resolution of TROPOMI level-1 and level-2 products.

The S5POC project exploited TROPOMI's potential for retrieving ocean color
products. This helps not only for obtaining hyperspectrally-derived ocean color
data sets in time periods where no hyperspectral ocean color missions are avail-
able and adds understanding for hyperspectral ocean color retrievals, but also
offers unique ocean color retrievals by exploiting the filling-in of Fraunhofer struc-
tures by vibrational Raman scattering (VRS) which requires a spectral resolution
below 1nm. Within SS5POC-PAL the algorithm developed within S5POC for
the diffuse attenuation coefficients (K) in the UV-AB, UV-A and short blue
wavelength range by (Oelker et al., 2022b) is implemented and is described in
detail within this document. The retrieval is based on the Differential Optical
Absorption Spectroscopy (DOAS) in combination with radiative transfer model-
ing (RTM). S5POC TROPOMI products are produced at TROPOMI's level-1
and level-2 product resolution.

3.1 Introducing diffuse attenuation

The diffuse attenuation coefficient (K;) is important for understanding biogeo-
chemical processes and the heat budget of the global ocean. It describes how
fast the incoming radiation diminishes with ocean depth z and can be calculated
as a mean value over distant depths z; and z; from the change in downwelling
irradiance E4(z) (Lee et al., 2005)

Kalor ¢ 2,0) = — i ~hn @ZE; i;) . (1)
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which gives K;(zg9, A\) = 1/290() for the attenuation depth zgq defined as the
depth at which the downwelling irradiance has reduced to 1/e of its subsurface
value (Gordon & McCluney, 1975).

In principle, three approaches exist to estimate K, from multispectral ocean
color sensors, two empirical and one semi-analytical. The direct one-step em-
pirical method determines K, from the empirical relationship between K, and
the ratio of water-leaving radiances at two wavelengths in the blue and the
green (Austin & Petzold, 1981). The two-step empirical approach first deter-
mines Chla from remote sensing reflectance using a standard ocean color retrieval
(O'Reilly et al., 1998) and then evaluates K, using another set of empirical re-
lationships (Morel, 1988; Morel & Maritorena, 2001). A more recent publication
presents a combination of the two empirical approaches based on ratios of water-
leaving reflectances using Chla as an implicit intermediary (Morel et al., 2007).
The third approach first determines inherent optical properties (IOPs), i.e., ab-
sorption and backscattering, via a quasi-analytical approach in a first step and
then relates these to Ky using a LUT established through extensive radiative
transfer modeling (Lee et al., 2005).

The K, retrieval in the SS5POC project is based on the work by Dinter et al.
(2015) and Oelker et al. (2019) and details on the method, retrieval results and
their validation and uncertainties can be found in the publication Oelker et al.
(2022b). K, is determined from the VRS signal at the top of atmosphere. VRS
occurs in liquid water when vibrational modes of the water molecules are excited
by inelastic scattering with photons. Incoming radiation at a single wavelength
is shifted in this process and emitted as a broad band at longer wavelengths
(Stokes line). Anti-Stokes line is not considered. The mean shift from excitation
to emission can be described as a constant change in wave number of around
Av = 3357cm™! with a width of the broad band emission of 821cm™" (Wal-
rafen, 1967). VRS leads to filling-in of Fraunhofer lines, which can be detected as
pseudo-absorption in backscattered radiances measured by hyperspectral satel-
lites using DOAS (Vountas et al., 2003). Dinter et al. (2015) found a relationship
between the VRS at the top of atmosphere and the light availability or the diffuse
attenuation coefficient in the ocean. In general, there is a close relationship be-
tween the number of inelastic scattering processes and the number of photons in
the ocean and so the amount of light. RTM simulations are made of underwater
radiant fluxes used to calculate K, for a given scenario and of top of atmosphere
radiances used to determine the VRS signal for a given scenario. RTM results
are combined in a LUT relating K, to VRS DOAS output. VRS DOAS results
are then converted to K, using satellite viewing geometry as additional input
parameters in the LUT.

K is derived in three spectral regions: in the blue from 390 nm to 423 nm,
in the UV-A from 356.5nm to 390 nm (UVA), and in the UV-A from 312.5nm

14
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to 338.5nm (UVAB). These spectral regions correspond for K,-blue to a blue
DOAS fit window (450 nm to 493 nm) which has already been used in Losa et al.
(2017) and Oelker et al. (2019) and for K;-UVAB to a UV DOAS fit window
(349.5 nm to 382 nm) already used in Vountas et al. Vountas et al. (2003, 2007).
Extending the UV DOAS fit window to 395 nm was also tested to fully exploit
the longer wavelengths available in band 3. However, fit results are more stable
for the shorter wavelength window (until 382nm). The K;-UVA corresponds to
a fit window from 405nm to 450 nm (short-blue) which is tested for the first
time. RTM settings closely follow Oelker et al. (2019), however, a more realistic
atmosphere including more trace gases is used.

4 Algorithms for S5POC level-2 products

4.1 Cloud Screening

Clouds shield the radiance signal from the ocean, so the TROPOMI data set was
filtered for cloud-free scenes using a cloud fraction of 0.01 as threshold. Cloud
fractions were taken from the FRESCO type cloud retrieval in the nitrogen dioxide
fit window (van Geffen et al., 2019). Pixels over land and inland waters were
removed from the data set, but are contained in the prototype products and

flagged accordingly, see SSPOC PUM (Oelker et al., 2022a) for details.

4.2 Differential Optical Absorption Spectroscopy

Differential Optical Absorption Spectroscopy (DOAS) is a technique commonly
used for the retrieval of atmospheric trace gases by distinguishing their high
frequency absorption features (Perner & Platt, 1979). The DOAS method has
been extended for investigating oceanic variables (PhytoDOAS). The amount of
VRS (Vountas et al., 2007), light availability (Dinter et al., 2015) and K, (Oelker
et al., 2019), Chla of different PFTs (Bracher et al., 2009; Sadeghi et al., 2012)
and sun induced marine Chla fluorescence (SIF-marine) (Wolanin et al., 2015a)
have been successfully retrieved from SCIAMACHY and partly (SIF-marine and
K ;) from OMI and/or GOME-2 measurements.

DOAS is based on Beer-Lambert’s law. The PhytoDOAS approach can be
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formulated as:

T(A) = In(Ip /1)

I J K
= S0i0aiN) + D Spi0pi(N) + > Seross + Sror
i=1 j=1 k=1

L M
- Z Se,lae,l + Z .CEm)\m (2)
=1 m=0

where 7 is the optical depth calculated as the natural logarithm of the solar
irradiance I and the backscattered radiance I measured by the satellite. The
optical depth is a sum of all contributions from constituents in the atmosphere
and ocean that modify the intensity by scattering or absorption. Absorption in
the atmosphere is accounted for by a sum over I atmospheric absorbers with
an optical depth calculated as product of slant column density S, ; and absorp-
tion cross section 0,,. The slant column density is the number density of the
absorber integrated along the effective light path through the atmosphere. Like-
wise, S, ; are the slant columns or scaling factors of J oceanic absorbers with
absorption cross sections o, ;. Inelastic scattering effects in the ocean are de-
scribed by scaling factors S and inelastic reference spectra o ;. Atmospheric
inelastic scattering is known as the Ring effect caused by rotational Raman scat-
tering (RRS). Sk and o are the scaling factor and reference spectrum for the
Ring effect, respectively. Instrumental effects caused, e.g. by straylight in the
instrument, can also be included using reference spectra o.; that characterize
the spectral structure of, e.g. the straylight. S.; are the corresponding scal-
ing factors. A low order polynomial, typically M < 5, is added to account for
all broad band effects such as elastic scattering in atmosphere and ocean and
colored dissolved organic matter (CDOM) and non-algae particle absorption in
the ocean. Eq. 2 is solved by Levenberg Marquardt least squares minimization
solving for the various scaling or fit factors .S and the polynomial coefficients z,,.
Inelastic scattering processes lead to filling-in of Fraunhofer lines. They are
treated as pseudo-absorbers in DOAS, with their reference spectra calculated
from RTM radiances including I* and excluding inelastic processes I:
I+
s =1n = (3)
In the atmosphere as well as in the ocean, inelastic scattering processes are
present. In the ocean, fluorescence and VRS are the two important processes
that are investigated for the retrieval of the products within the S5POC project.
The DOAS method can be used in small, only a few nanometer wide, wave-
length windows, but also in larger wavelength windows, tens of nanometer wide,
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depending on the target. Only absorbing constituents and scattering processes
relevant in these wavelength windows have to be considered in the DOAS fit.

The scaling or fit factors obtained for the target constituent have to be
converted into a physical value, e.g. Chla. This conversion is done with the help
of LUTs based on RTM simulations.

4.3 Radiative transfer model simulations

The ocean-atmosphere coupled RTM SCIATRAN (Blum et al., 2012; Rozanov
et al., 2014, 2017) version 4.7.4 is used for simulations which are used for cal-
culating reference spectra and LUTs and evaluating retrieval sensitivity. The
optical properties of the ocean are varied by changing the Chla (case 1 waters).
Other optically active constituents such as CDOM change proportionally. Top of
Atmosphere (TOA) radiances are modeled for 23 different case-1 scenarios with
Chla ranging between 0 and 30 mg/m3. A standard case-1 model is used based
on phytoplankton absorption in water according to (Bracher & Wiencke, 2000),
CDOM absorption coefficient is represented as absorption by fulvic (50%) and hu-
mic (50%) acids. The spectral slopes of fulvic and humic absorption coefficients
are set to 0.0194nm~! and 0.011 nm™!, respectively. The absorption coefficient
of this mixture at 440 nm is equal to that of CDOM absorption calculated ac-
cording to (Morel & Maritorena, 2001) in the case of standard case-1 model.
The chlorophyll and CDOM absorption coefficients are presented in Figure 1.

025

T T
Chlorophyll concentration is 3 mg/m®

—— GDOM as fulvi and humic acids
—— CDOM Morel

. Chi Bracher —
0.20 F —— Chl Haltrin q

Absorption coefficient, m”

300 350 400 450 500
Wavelength, nm

Figure 1. Comparison of chlorophyll and CDOM absorption coefficients.

A recent water absorption spectrum by Mason et al. (2016) is used. Par-
ticle scattering is implemented with a wavelength-independent Fournier-Forand
phase function as in the widely used Hydrolight case-1 water model (Mobley &
Sundman, 2013). A background maritime aerosol is assumed with aerosol optical
depth (AOD) of 0.1 at 550 nm. Detailed model settings can be found in Oelker
et al. (2022b) adapted from Oelker et al. (2019) and Dinter et al. (2015).
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A TROPOMI-measured extraterrestrial solar spectrum was used for the TOA
radiance calculations, since spectral alignment is very important for the DOAS
retrieval. A solar spectrum measurement from a middle CCD row (row 225,
0-based) from May 2018 was chosen.

Geometry settings were chosen to cover all of TROPOMI's viewing geome-
tries:

e TOA radiances were modeled for 13 different solar zenith angle (SZA,
defined on TOA), i.e. 5°steps between 10°and 70°.

e Viewing zenith angle (VZA) was varied between 0°and 70°in steps of 5°.

e Relative azimuth angle was varied between 0°and 180° in steps of 45°.

4.4 Diffuse attenuation coefficients

Ky is derived from VRS retrieved using the PhytoDOAS method. The average
K s are derived in three different spectral regions 312.5 to 338.5 nm (K 4-UVAB),
356.5 to 390 nm (K ;-UVA), and 390 to 423 nm (K ;-blue). Since the wavelength
is shifted in the VRS process by between 35 and 60 nm in this spectral range,
the three Kys correspond to the VRS signal in three spectral regions with longer
wavelengths, i.e., 349.5 to 382 nm, 405 to 450 nm, 450 to 493 nm, respectively.
Since TROPOMI K 4-blue was much higher than expected an offset correction
was applied to the VRS-blue fit factors. Then K, is derived from VRS fit factors
via a LUT. Details of the algorithm steps follow below and are also published in
Oelker et al. (2022b). Figure 2 provides an overview over the K, algorithm.
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TROPOMI level 1b RTM simulated RTM simulated
radiances & TOA radiances in-water radiances
solar irradiances ‘

I R l

| PhytoDOAS .

l simulated fyrs simulated K
VRS fit factors fyrs
for each groundpixel
LUT

Ky(fyrs, SZA, LOS)

Y

TROPOMI K, product

Figure 2: Flow chart illustrating the TROPOMI diffuse attenuation (K,) algo-
rithm. Figure from in Oelker et al. (2022b).

4.4.1 PhytoDOAS VRS fit

Three VRS fits are performed in three spectral regions 349.5 to 382nm, 405
to 450 nm, and 450 to 493 nm, in the following referred to as UVA, short-blue,
and blue window, respectively. The short-blue and blue windows lie in band 4 of
TROPOMI's spectrometer, whereas the UVA window lies in band 3. The VRS
fits in the short-blue and blue window only differ in fit window, whereas the UV
window fit additionally differs in the fitted atmospheric absorbers. Considering
all relevant processes in these fit windows for targeting VRS, eq. 2 reduces to:

] lo
= 1n —
T 7

I M
= 8ui0ai(A) + Svrsovas(A) — Socooc(N) — Sror(A) + Y wmA™.
=1 m=0
(4)

For all three fit windows, a second order polynomial was chosen M = 2. The
following cross sections are included in the PhytoDOAS fits for all three fit win-
dows:
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e pseudo-absorption cross section for RRS (o) accounting for the Ring effect
Grainger & Ring (1962) in the atmosphere. RRS pseudo-absorption cross
sections are calculated based on eq. 3 Vountas et al. (1998).

e pseudo-absorption cross sections for VRS (oygs) that were calculated
based on eq. 3 from modeled case | TOA radiances for a Chla of 0.1 mg/m?
and a SZA of 40°.

e ocean weighting function (0o ) defined as in Dinter et al. (2015) calculated
from case-1 TOA radiances for a SZA of 40°. The weighting function was
calculated for a change in Chla from 0.1 mg/m? to 0.11 mg/m3.

Changes in SZA and Chla lead to spectral distortion of the reference spectra.
Reference spectra were calculated for conditions (SZA and Chla) that lie in the
middle of the ranges encountered for satellite images. Using these average con-
ditions for calculating the spectra ensures that there is a large regime where fit
factor and Chla are linearly related. Figure 3 shows the ocean weighting function
and VRS reference spectrum. The impact of other phytoplankton absorption
and spectral slopes of CDOM absorption coefficients does not lead to signifi-
cant variations of ocean weighting function and VRS reference spectrum. As
an example Figure 3 b) demonstrates comparison of curent and previous VRS
pseudo-absorption spectrum.

For the blue and short-blue window, following atmospheric absorbers were
fitted: absorption cross sections for ozone (O, Serdyuchenko et al., 2014),
nitrogen dioxide (NO,, Vandaele et al., 1998), water vapour (H,O, Rothman
et al., 2013 using HITRAN 2009), oxygen dimer (O4, Thalman & Volkamer,
2013). In the UVA window, the absorption cross section for bromine monoxide
(BrO) was additionally fitted, but water vapour was removed from the list of
absorbers.

4.4.2 Radiative transfer simulations for VRS conversion to K,

Two types of RTM simulations have to be performed for converting VRS fit
factors to K;. On the one hand TOA radiances and on the other hand underwater
radiant fluxes for various case | ocean scenarios are needed. The model should
accurately describe radiative transfer processes, especially inelastic processes, in
the atmosphere and in the ocean at high spectral resolution matching the spectral
resolution of the satellites of about half a nanometer. The theoretical description
of VRS is based on the formulation of VRS by Haltrin & Kattawar (1993). The
reverse process (Anti-Stokes line) where a photon gains energy in the scattering
event is much less likely in nature, since most molecules occupy the ground state.
It is therefore neglected in the SCIATRAN model. Correct implementation of VRS

20



511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

S5POC-PAL Sentinel-5P PAL Kd: Version 1.1
AWI-IUP Algorithm Theoretical Base Document | Doc: S5POC-PAL-KD-ATBD

ATBD Date: 30 Sep 2025

—0.07

/ |o.06 006}

— Previous VRS spectrum
— Current VRS spectrum

/ Hoos

/oo

‘NV ‘ /'/ 0.03
SOl ) oo
M“M ”wﬁh\‘k/w”/ . 000
A 10.00
; 0.01 05E.

043467360 380 400 430 440 460 480 500 350 400 450 500 350 400 450 500
wavelength [nm]

—0.30

RS pseudo-absorption

weighting function ocean
VRS pseudo-absorption
weighting function ocean

~0.40 >

wavelength [nm] wavelength [nm]
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Figure 3: Ocean weighting function (red) and VRS reference spectrum (blue)
as function of wavelength. (a) Figure adapted from Oelker et al. (2022b). (b)
Comparison of current and previous VRS pseudo-absorption spectrum. (c) Com-
parison of current and previous WF ocean.

in SCIATRAN was evaluated by comparison with other radiative transfer models
and experimental data from satellite, ship-based, and underwater instruments
(Rozanov et al., 2017). The temperature dependence of VRS was also included
into the recent version of SCIATRAN software. To calculate the TOA radiances,
RTM settings are chosen as described in section 4.3. Modeled TOA radiances are
used to calculate VRS pseudo-absorption cross sections (eq. 3) and to perform
comparative DOAS retrievals for building a LUT. Underwater fluxes are used
to calculate K, for a given model scenario. Underwater fluxes were simulated
at a spectral resolution of 0.5nm using a Fraunhofer atlas (Chance & Kurucz,
2010) since they are insensitive to the exact spectral resolution. Other model
settings are the same as for the TOA radiances (section 4.3). Figure 4 illustrates
simulated spectra. Figure 4 a) shows the differential optical depth as calculated
from the simulated TOA radiances for different Chla. A second order polynomial
was fitted to 7 and subtracted. Simulated underwater fluxes are depicted in
Figure 4 b) as a function of wavelength for different Chla. Figure 4 c) shows the
VRS fit factors obtained with DOAS fit on these simulated differential optical
depths as a function of Chla for different SZAs. The K, averaged over the blue
spectral range is shown as a function of Chla in Figure 4 d).
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Figure 4: a) Differential optical depth as a function of wavelength for different
Chla and SZA = 40° calculated from simulated TOA radiances and model-input
irradiance by subtracting second order polynomial. Colored areas indicate the
DOAS fit window in the blue (grey, 450-493 nm), shortblue (blue, 405-450 nm),
and UV (green, 349.5-382 nm) for deriving K -blue, -UVA, and -UVAB, respec-
tively. b) Spectral K, calculated from simulated underwater fluxes for different
Chla and SZA = 40°. Colored areas indicate VRS excitation range over which
the mean K is averaged (K 4-blue (390-423 nm): grey, K;-UVA (356.5-390 nm):
blue, K4-UVAB (312.5-338.5nm): green). c) VRS fit factor as a function of Chla
as retrieved from simulated TOA radiances using DOAS. d) Mean K-blue, av-
eraged in the VRS excitation range indicated by grey area in b), as a function
of Chla. Black stars in c) and d) indicate the discrete Chla that were simulated,
c) and d) are shown for different SZAs, VZA is 0° in all examples. Figure from
Oelker et al. (2022b), suppl. material.

The impact of temperature on the VRS spectra and accuracy of K, re-
trieval is illustrated in Figure 5. The relative difference of derived K% from
expected K" caused by the variation of temperature were calculated as (K" —
K3er)/K5™ 100. One can see that the impact of temperature variations is below
~1% in the case of K;-UVAB and K ;- UVA. However, in the case of K;-blue
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less than ~0.1 m~! the impact of temperature variations is larger than ~2% and
increases with decreasing of K; (see Figure 5(c)).

Fit: 349.5-382 nm, Kd: 312.5-338.5 nm Fit: 405-450 nm, Kd: 356.5-390 nm
N 0.4r ] N [
t;_; :J— 051 a
o 02r . 7 o [
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3 3 00f
5 -02f 1 5 — ;]
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(a) (b)
Fit: 450-493 nm, Kd: 390-423 nm
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Kd expected, m", T=20°C
(c)

Figure 5: Relative difference between expected and derived K; caused by temper-
ature dependence of VRS frequency redistribution function. In the spectral range
(a) [312.5 - 338.5] nm, (b) [356.5 - 390.0] nm, (c) [390.0 - 423.0] nm. Expected
K, is calculated using water temperature 20°C. Solid lines - relative difference
for the water temperature equal to 10°C. Dashed lines - relative difference for
the water temperature equal to 30°C.

4.4.3 LUT for deriving K; from VRS

The LUT for deriving Ky from VRS is built by combining VRS PhytoDOAS
fits on simulated TOA radiances with K, calculated from simulated underwater
radiant fluxes.
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Figure 6: Look-up tables for converting VRS fit factors into diffuse attenuation
coefficients for three spectral regions (a) UVAB, (b) UVA, and (c) blue. The
selected SZA are shown as colors. The linestyle and symbol indicates the different
VZA and azimuth angels (Azm).

DOAS fit settings for the retrieval of theoretical VRS fit factors from the
modeled TOA radiances are the same as for the retrieval on satellite radiances
(see section 4.4.1) except for atmospheric cross sections. Water vapour is not
fitted, since it is not included in the SCIATRAN simulation. K is calculated
according to eq. 1 for each wavelength from the underwater radiant flux simu-
lations which give amongst others the downwelling irradiance at discrete depths
Z. zgo is determined via linear interpolation of the log-transformed downwelling
irradiance E; at depth. Resulting K are then averaged over wavelength between
312.5nm and 338.5 nm for the K;~-UVAB, between 356.5 nm and 390 nm for the
K ;-UVA, and between 390 nm and 423 nm for the K;-blue. K, calculations and
VRS PhytoDOAS retrievals are performed for each SZA, VZA, and azimuth angle
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separately.

VRS fit factors are matched with K, calculated from scenarios with the same
Chla (combination of Figures 4 c) and d)). A four-dimensional LUT is created
where K, is a function of VRS fit factor, SZA, VZA, and azimuth angle. LUTs
for K4 in the three spectral regions from the blue to the UV are shown in Figure 6.
Only selected three SZAs (20°,40°,60°), fourth VZAs (0°,20°,40°,60°) and three
azimuth angles (0°,90°,180°) from the range of all simulated angles are shown.

4.4.4 TROPOMI processing to VRS and Kd

120000 120000, 70000,

100000 100000

ground pixel frequency
» o ®
S o o
S o o
S & o
8 & 3B
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2 o o
S o o
S o o
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S o o
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-0.4-03-0.2-01 0.0 01 02 03 04 2 4-03-02-0100 01 02 03 04 —0.4-03-0.2-01 0.0 0.1 02 03 04
VRS fit factor VRS fit factor VRS fit factor

Figure 7: TROPOMI VRS-fit factor frequency distributions for the three wave-
length windows (from left to right) UVA, short-blue and blue over cloudy scenes
for 14 to 20 May 2018 in the Atlantic Ocean.

TROPOMI level-1b data of the time period 11 May to 9 June 2018 ob-
tained over the Atlantic Ocean were processed (see section 4.4.1) for the three
PhytoDOAS fit windows in the UV, short-blue and blue to retrieve VRS fit fac-
tors. Additionally, for investigating instrumental effects on the VRS retrievals,
VRS fit factors of completely cloudy scenes were analysed. The fit factors for
VRS at the three wavelengths windows (UVA, short blue and blue) were zero or
very close to zero (Figure 7), which indicates that the influence of instrumental
effects on the retrieval is small, opposed to GOME-2 VRS-fits, for which a large
VZA dependence was found over clouds (see Oelker (2021)).

After applying the LUT as described in section 4.4.3, TROPOMI-derived
K 4-blue was much higher than expected (see comparisons to K; from in-situ
and to similar satellite products in SSPOC-VR, see Figure 8a). Figure 9 shows
the originally retrieved VRS-blue and Kj-blue for this time period and area.
Therefore, an empirical offset correction had to be developed which improved
the agreement of K ;-blue to the wavelength-converted K ;(490) from OLCI and
OC-CCl when a constant was added to the VRS fit factors. Generally, TROPOMI
original K 4-blue is closer to the OLCl K4-blue than the OC-CCl Ky-blue and
correlation is highest for low K values (see Table 5 and Figure 5 in SSPOC-VR).
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Figure 8: K 4-blue derived from a) original and offset corrected (b, c) TROPOMI
VRS fit factors versus daily matchups of OLCI K4-blue (for details on this prod-
ucts see S5POC-VR) for 11 May to 9 June 2018, both gridded at 0.083° for 11
May to 9 June 2018 and the Atlantic Ocean. Figure from Oelker et al. (2022b),
suppl. material.
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Figure 9: Original TROPOMI VRS fit factors (left) and correspondingly derived
K4-blue, both gridded at 0.083° as mean for 11 May to 9 June 2018 for the
Atlantic Ocean. Figure from Oelker et al. (2022b), suppl. material.

577 Therefore, the offset correction applied to the input VRS-blue data for the
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LUT was derived from comparing the low values (K, <0.15 m) of TROPOMI
K -blue to those from the OLCl K -blue data set to determine the offset for
VRS-blue that best corrects the data. This was based on considering daily 5 min
gridded matchup K4-blue data from TROPOMI and OLCI within the entire RV
Polarstern expedition PS113 time period (11 May to 9 June 2018) and area of
50°S to 50°N and 70°W to 10°E. The offset correction was optimized such that a
linear total-least square regression on this restricted comparison data set yielded
a slope close to one. The optimal offset to VRS-blue fit factor was found to
be 0.186. Regression statistics for using this setting to derive the final K -blue
resulted in the comparison to OLCl K4-blue in a slope of 1.01, an intercept of
-0.002 m, and a Pearson correlation coefficient of 0.80 (Figure 8b) for this
restricted data set. The offset was used to correct all VRS fit factors, also
retrieved for regions D, and by that the whole K;-blue range (Figure 8c).

(A) B) ©)
-60°  -30° 0 -60° -30° 0 -60" -30° O
30° i 30°
0 g 0
-30°y - - 1 gl | B
349.5 - 382 nm ‘ 405 — 450 nm » 450 — 493 nm

-60° -30° 0° -60" -30° 0" -60° -30° 0’

m
0.0 0.2 0.5 0.8 1.0
VRS fit factor

Figure 10: TROPOMI VRS fit factors in the (from left to right) UVA, short-
blue and blue fit window in the Atlantic Ocean for 11 May to 9 Jun 2018. For
TROPOMI VRS-blue fit factors an offset of 0.186 was added to the original
VRS-blue (Figure 9). Figure from Oelker et al. (2022b).

Figure 10 shows VRS fit factors retrieved from TROPOMI level-1b data for
the three PhytoDOAS fit windows in the UV, short-blue and blue for the same
time period and area as described above. VRS-blue fit factors are offset corrected.
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For all three fit windows, high and low VRS fit factors are found in typically low
and high Chla corresponding to low and high light penetration into the ocean,
respectively. As expected, the VRS signal increases with increasing wavelength
window. The average root mean square (RMS) of all fit residuals in this area
and time period and its standard deviation were evaluated to 1.0 - 103 & 3 - 10™*
for the UV (excluding 26 outliers with RMS >4), 0.9 - 103 + 2 - 10™* for the
short-blue, and 1.0 - 103 + 3 - 10 for the blue fit window. VRS fit factors from
different fit windows are not strictly correlated, e.g., differences appear around
Newfoundland and Great Britain.

0.0 0.2 05 0.8 1.0 0.0 0.2 0.5 0.8 1.0 0.0 0.2 05 0.8 1.0

Figure 11: TROPOMI VRS fit factors (from left to right) UVA, short-blue and
blue fit window for 11 Aug to 10 Sep 2019 for the North Sea up to the Fram
Strait. For TROPOMI VRS-blue fit factors an offset of 0.186 was added. Pixels
with SZA > 70°were screened out, because 70°is the largest SZA in the LUT.
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Figure 12: TROPOMI VRS fit factors (from left to right) UVA, short-blue and
blue fit window for 27 Jun to 25 Jul 2020 for the North Sea up to the Fram
Strait, including East Greenland waters. For TROPOMI VRS-blue fit factors, an
offset of 0.186 was added. Pixels with SZA > 70°were screened out, because
70°is the largest SZA in the LUT.
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Figure 13: TROPOMI (A) K4-UVAB, (B) K4-UVA, and (C) K4-blue gridded at
0.083° as mean for 11 May to 9 June 2018 for the Atlantic Ocean. Figure from
Oelker et al. (2022b).
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603 TROPOMI K, was derived from the VRS fit factors, shown in Figure 10, Fig-
eos ure 11 and Figure 12, using the separate LUTs (as described in section 4.4.3) for
cos each wavelength region. In Figure 13 the resulting (A) K,;-UVAB, (B) K;-UVA,
sos and (C) Ky-blue in the Atlantic Ocean for the PS113 (for region D, see Fig. 4
s in SBPOC-VR) can be seen for the same time period. Lowest K, are found in
s the North and South Atlantic Gyres, highest K, in the upwelling regions along
0o the African coast and the Amazon river plume. With decreasing wavelength, K
e10 increases. However, K;-UVAB is not generally larger than K4 -UVA. In upwelling
sur  regions off the coast of West Africa, the Amazon river plume, around Newfound-
s> land, and around Great Britain, the ratio K;-UVA/K;-UVAB is larger than 1
e (roughly 1.25 on average, 2 in extreme cases). Similarly in 2020 in the North
sia  Atlantic K4-UVA is significantly higher even outcompeting K;-blue. Ky-blue
s1s IS much lower in the subtropical and tropical ocean and shows values between
s16 [{4-UVA and UVAB in the productive areas north of the North Atlantic Gyre.

-

« 9 Feasibility

618

Sentinel-5p data
level 1b level 1b
radiances irradiances

| | reference spectra
@phytoDOAS — slit function parameters
Fraunhofer atlas

phytoDOAS
output files

reading and flagging
phytoDOAS output

relevant
phytoDOAS output

| conversion of
Joeieup el ©phytoDOAS fit factors

S5P Ocean
Color products

Figure 14: Scheme of the processing chain. Dynamic input files are shown in
dark brown, intermediate and product files in light brown. Static input files are
highlighted in grey. Processing steps A to C are shown in green.
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Figure 14 schematically shows the processing chain of the TROPOMI ocean
color retrievals. Dynamic input files are shown in dark grey, intermediate and
output files in light grey, and static input files in light blue. The chain consists
of three processing steps A, B, and C highlighted in green.

5.1 Computational effort

Processing one full orbit of TROPOMI data for all three targets of KD takes
roughly 7.5 minutes for step A, 1 minute for step B, and 30 seconds for step C.
Through introducing parallel computing on the super computer used, 200 orbits
at the same time can be processed which enables to process a whole year for the
three targets in less than 4 hours. In summary, the computational load of this
product is low and the output file size similar to other S5P L2 products.

5.2 Input data

Retrieval processing of S5POC products requires dynamic and static input data.

5.2.1 Dynamic input

The main dynamic input data for the S5p OCIO product are TROPOMI L1
products of band 3 (for KD-UVAB) and band 4 (for KD-UVA and KD-blue)
radiance and irradiance. Global data is required. In addition to the TROPOMI
vl data, TROPOMI NO2 OFFL data are used to extract cloud information which
is added to the KD L2 files.

5.2.2 Static input

Static input data for the OCIO retrieval have been briefly discussed in section 8
and include cross-sections and solar Fraunhofer atlas. They are available from
the literature, cf. Table 8.2. In addition, the ISRF is required which is available
from the Sbp project.

5.3 Output Product Overview

Output data format follows the TROPOMI netcdf standard. Details on the
product can be found in the SSPOC PUM (Oelker et al., 2022a).
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6 Error analysis

Uncertainties associated with S5P ocean color products were assessed through
the measurement fit errors (detailed in S5POC IAR, Bracher et al. (2022a)),
the sensitivity analysis of S5POC retrievals using RTM (detailed in 6.1), in-
tercomparison to ocean color products from multispectral satellite sensors and
validation with in-situ data (both detailed in Bracher et al. (2022b)). Maximum
errors obtained via the retrievals sensitivity studies are used as specific model
errors and provided together with the measurement errors (fit errors) within the
final error budget assessment (see Chapter 3 in S5POC IAR, Bracher et al.
(2022a)). For S5POC K, products their detailed and total uncertainties are also
provided in the publication Oelker et al. (2022b).

6.1 Retrieval sensitivity

Here, we detail the results of the sensitivity analysis. Some of these results
were obtained in previous studies related to similar atmospheric sensors used to
obtain the same OC products (Dinter et al., 2015; Wolanin et al., 2015b; Oelker
et al, 2019). Settings in the RTM scenarios used for building the retrieval
LUTs were investigated. It was tested how a change in a model parameter
influences the resulting S5P ocean color product, e.g. the choice of chlorophyll-a
absorption spectra in the UV region on the Kd-UVAB product. Also information
on PhytoDOAS retrieval sensitivity from previous studies for estimating, e.g. the
influence of the vertical distribution of Chl-a in the water column, is included
here.

6.1.1 K, algorithm sensitivity analysis

The algorithm sensitivity was extending the analysis by Oelker et al. (2019)
which focused on aerosol and CDOM settings, to the parameters: CDOM slope,
UV-absorbing pigments, liquid water absorption, wind speed, and ozone concen-
tration. For each parameter, the sensitivity was analyzed as follows. An RTM
simulation was performed to calculate radiances and radiant fluxes in which one
parameter is increased or decreased with respect to the standard scenario used
to build the LUT as described in section 4.4.3. The PhytoDOAS fit was per-
formed on this modified scenario. Resulting VRS fit factors were converted to
K, using the LUT. The resulting K, K%, was compared to the expected K,
K7®, calculated from the radiant fluxes of the modified scenario. The deviation
of expected from derived K, was determined as
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KSXP _ ngr (5)
K3®

Since mainly only a change in inherent optical properties changes K, the param-
eters can be separated in two groups. One group comprises the atmospheric and
surface parameters which have no or only a minimal effect on the mean K, over
the first optical depth, but may influence VRS since scattering is proportional to
light intensity. The second group comprises the oceanic parameters which affect
both, K, and VRS. For the second group, K; changes can be large, however,
VRS changes accordingly, and K, is retrieved correctly within an uncertainty
which is only a fraction of the change in K.

In general, depending on observation geometry, a change of selected atmospheric
or oceanic parameter can lead both to the increase and to the decrease of VRS
signal (pseudo-absorption cross section). Taking into account that VRS signal is

defined as
It I—+ Al AT
g = IHI—_ = IHI—_ = ln(l—i—]—_) 5 (6)

where I and I~ are TOA radiances calculated including and excluding inelastic
processes, respectively, AI = I — I~ is the contribution of inelastic process.
Accounting for that AI/I~ is significantly smaller than 1, we obtain for VRS
signal the following approximation:

ATl

This approximation will be used in the following to explain the sign or magnitude
of obtained K, deviations.

I: Atmospheric and surface parameters
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Figure 15: Filling-in by VRS for different model parameterizations in comparison
to the standard simulation for the three wavelength ranges of the PhytoDOAS
VRS fits. Figure from Oelker et al. (2022b), suppl. material.

Parameters within the first group were varied as follows: wind speed was
reduced to 2 m/s and increased to 8 m/s (standard - 4.1 m/s); aerosol optical
depth (AOD) was reduced to 0.05 and increased to 0.2 (standard - 0.1); ozone
profile was changed to one with reduced total ozone column of 290 DU (standard
- 420 DU). Figure 15 shows the influence of these selected atmospheric and sur-
face parameters on the filling-in by VRS as determined by Equation (2) in section
4.2 for Chla of 0.1 mg/m3. The influence of AOD and wind speed is largest for
the blue fit window and decreases with decreasing wavelength. It is negligible
for wavelengths smaller ~360 nm. The influence of the ozone concentration is
largest at the short wavelengths. It is negligible for wavelengths larger ~370 nm.
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Figure 16: Deviation of derived from expected K in case of (a) reduced AOD,
(b) increased AOD, (c) reduced wind speed, (d) increased wind speed, and (e)
reduced ozone column for different SZA. Results were averaged for different VZA
with the standard deviation given as error bar. (a), (b) show results for K;-UVA,
(c), (d) for K4-blue, and (e) for K;-UVAB. Figure from Oelker et al. (2022b).

la: Aerosol
The deviations of derived from expected K, caused by the variation of AOD are
presented in Figs. 17 and Figs. 18 in the case of 50% reduced and 50% enhanced
AQD, respectively.
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Figure 17: Deviation of derived from expected K, in the case of 50% reduced
AOD. (a) K4-UVAB, (b) K4-UVA, (c) K4-blue. Results were averaged for different
zenith and azimuth angles with the standard deviation given as errorbar
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Figure 18: Deviation of derived from expected K, in the case of 50% enhanced
AOD. (a) K4-UVAB, (b) K4-UVA, (c) K4-blue. Results were averaged for different
zenith and azimuth angles with the standard deviation given as errorbar

The decrease of AOD leads to the increase of VRS fit factors and therefore
to the decrease of K; and vice versa in the case of increase AOD. As results one
can see in Figs. 17 positive deviations of retrieved K; whereas Figs. 18 show neg-
ative ones. The impact of aerosol variations on the derivation of K,, increased
with the increase of the wavelength. In particular, the relative deviations are
in the range 1%-4%, 2%-8%, and 2%-15% in the case of K4;-UVAB, K;-UVA,
and Ky-blue, respectively. In the case of 50% enhanced AOD the magnitude of
deviations are similar but they are negative. One can also see that the magnitude
of deviations depends on the SZA and increased with the increasing of solar angle.

LUTs for errors caused by variation of aerosol optical thickness
The deviations of derived from expected K, caused by the variation of AOD are
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summarized in LUTs " Err_lut_-W1.atm", " Err_lut_W2.atm", and " Err_lut_W3.atm"
for "UVAB", "UVA", and "short-blue”, respectively.

Columns 6 and 7 in these files contain the relative errors [%] caused by usage
of AOT equal to 7~ = 0.05 and 7, = 0.2, respectively, in contrast to AOT 0.1
used in main LUTs for K;. The results from these columns enable to estimate
the error caused by AOT if this AOT is known for a selected measurement point.
Indeed, let us define 75, = 0.1 as used in main LUTs, than under assumption of
linear dependence between error of K; estimation and AOT, we have in the case
of 7 > 7

T — Tut

= w _— y 8
o(r) = () T ®
and in the case of 7 < 7y,;:
Tiwt — T
e U ) . 9
o(r) = nalr) 2T ©)

Taking into account that 7 = 75,4/2 and 7, = 27,;, we have

T — Tut

5(7-) = Z':lut(27_lut) T s T > Tt s (10)
ut

6<T) = 25lut<7_lut/2) 7—lu7t-l—_7— , T < Tt - (]_]_)
ut

We note that &1, (2714¢) and €y, (714¢/2) for a selected observation / illumination
geometry and the retrieved VRS scaling factor can be obtained by the same way
as in the case of K, using the main LUTs.

In the absence of an additional information about AOT the error caused by AOT
will be estimated as maz(|e1ue(271u) |, |€1ut (Trut /2)])-

Ib: Wind speed

Depending on observation geometry, a change of Wind Speed (WS) magnitude
can lead both to the increase and to the decrease of VRS signal. Accounting for
that the decrease of wind speed leads to the increase of I~ in glint directions,
one can see that according to Eq. (7) this results in the decrease of o. In
order to compensate the decrease of o the VRS fit factor of PhytoDOAS fit
needs to be also decreased. (Let us recall that in PhytoDOAS fit the constant
pseudo-absorption cross section corresponding to WS=4.1m/s is used.) In turn
the decrease of VRS fit factor results in the increase of K; derived using LUTs.
Following Eq. (5), we expect negative deviations derived from expected K; in
the glint range by the decrease of wind speed.

The deviations of derived from expected K, caused by the variation of wind speed
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75« are presented in Figs. 19 and Figs. 20 in the case of ~50% reduced (2m/s) and
755 ~50% enhanced (8 m/s) WS, respectively, as compare to 4.1 m/s used for LUTs.
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Figure 19: Deviation of derived from expected K, in the case of reduced WS. (a)
Ka-UVAB, (b) Ks-UVA, (c) Kg-blue. Results were averaged for different zenith
and azimuth angles with the standard deviation given as errorbar
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Figure 20: Deviation of derived from expected K, in the case of enhanced WS.
(a) Kg-UVAB, (b) K4-UVA, (c) Kg-blue. Results were averaged for different
zenith and azimuth angles with the standard deviation given as errorbar

One can see from these plots that in general the decrease of WS leads to the
decrease of averaged VRS fit factors and therefore to the increase of derived K,
and vice versa in the case of increased WS. As results one can see in Fig. 19 neg-
ative deviations of retrieved K; whereas Fig. 20 show positive ones. In particular,
the maximal relative deviations (after averaging over zenith and azimuth angles)
in the case of reduced WS are -4%, -8%, and -15% for K;-UVAB, K;-UVA, and
Kg-blue, respectively. It is worth to notice that the maximal contribution in de-
viations bring observation directions in the glint range corresponding to the zero
azimuth angle. Excluding these observation directions, one can reduce maximal
relative deviations especially in the case of Ky-blue. In particular, the maximal
relative deviations in this case are -3%, -5%, and -5% in the case of K;-UVAB,
K4-UVA, and Ky-blue, respectively.

The maximal relative deviations in the case of increased WS (8 m/s) are positive
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and equal to 3%, 4%, and 10% for K;-UVAB, K;-UVA, and K -blue, respectively.
In contrast to the decreased WS the excluding of observations in glint direction
does not significantly reduce obtained deviations.

LUTs for errors caused by variation of wind speed

The deviations of derived from expected K,; caused by the variation of wind
speed (v) are presented in LUTs "Err_lut-W1.atm”, "Err_lut-W2.atm", and
"Err_lut_W3.atm" for "UVAB", "UVA", and "short-blue”, respectively. Columns
8 and 9 in these files contain the relative errors [%] caused by the usage v equal
to v_ = 2m/s and vy = 8m/s, respectively, in contrast to v = 4.1 m/s used
in the main LUTs for K,;. The results of these columns enable us to estimate
the error caused by the wind speed if this v is known for a selected measurement
point.

Let us define v;,; = 4.1 as used in main LUTs, than under assumption of linear
dependence between error of K; estimation and wind speed, we have in the case
of v > vyu:

UV — Ut
e(v) = gpu(vy) ——— 12
(1) = ) (12)
and in the case of v < vy
Uiyt — U
=) —— . 13
() = eun(v-) T (13)

We note that £;,:(v_) and e, (vy) for the selected observation / illumination
geometry and the retrieved VRS scaling factor can be obtained in the same way
as in the case of K using the main LUTs.

In the absence of an additional information about WS the error caused by wind
speed will be estimated as maz(|ee(v-)]|, |€ru(v4)])-

Ic: Ozone concentration
The decrease of ozone vertical column leeds in general to the decrease of radiation
absorption in the atmosphere and in turn to the increase of radiation which
reaches ocean surface, especially in the UV spectral range. On one hand this
results in the increase of energy transform from short wavelengths to the long ones
caused by the vibrational Raman scattering. On the another hand the decrease
of absorption in the atmosphere leads to the increase of outgoing radiation at
top of atmosphere. According to Eq. (7), the increase of A and increase of I~
can partly compensate each other. However, taking in the account that in the
spectral range 280 - 350 mm the ozone absorption decreases with the increase of
wavelength, one can expect that the increase of Al has more impact on ¢ then
the increase of I~ and it is reasonable to expect the enhance of o by the reduce
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of ozone vertical column. In order to compensate the increase of o the VRS
fit factor of PhytoDOAS fit needs to be also increased to compensate pseudo-
absorption cross section corresponding to 430 DU used for LUTs. The increase
of VRS fit factor results in the decrease of K, derived using LUTs. Following
Eq. (5), we expect positive deviations derived from expected K, in the case of
decrease of ozone column.

The deviations of derived from expected K;-UVAB caused by the variation of
ozone column is presented in Fig. 21 in the case of ~33% reduced (290 DU) as
compare to 430 DU used for LUTs.

08 290 DU instead of 420 DU
K, - UVAB

SZA

30°

60°

Relative difference, %
A N O N A O O
T

0.01 0.10 1.00
Expected K, m’

(a)

Figure 21: Deviation of derived from expected K;-UVAB in the case of reduced
ozone vertical column (290 DU instead of 430 DU used for LUTs). Results were
averaged for different zenith and azimuth angles with the standard deviation
given as errorbar.

One can see from Fig. 21 that maximal deviations reach 4%-6% depending
on the solar zenith angle in the case of minimal values of expected K;-UVAB.
The deviations are positive what confirms above considerations.

The impact of ozone vertical column variations on the K4;-UVA and Kg-blue is
neglectable and not shown here.

LUTs for errors caused by variation of the ozon vertical column
The deviations derived from expected K, caused by the variation of the ozone
column (q) are presented in LUT "Err_lut-W1.atm".
Column 10 in this file contains the relative errors [%] caused by usage ¢ equal to
q— = 290 DU in contrast to ¢ = 420 DU used in main LUTs for K. The results
from this column enable to estimate the error caused by the ozone column if this
q is known for a selected measurement point.
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Let us define vy, = 420 DU as used in main LUTs, than under assumption of
linear dependence between error of K; estimation and ozone column, we have in
the case of ¢ < qus:

Qiut — (4
Vit — -

e(q) = €ru(q-) (14)
We note that £;,4(q_) for the selected observation/illumination geometry and
the retrieved VRS scaling factor can be obtained in the same manner as in the
case of K using the main LUTs.

In the absence of an additional information about ozone column the error caused
by g will be estimated as |g;,:(q_)].

Later on, results will show that TROPOMI K, can not be well retrieved for
scenes with K; > 0.3 or 0.5 m™* within S5POC regions C and D, respectively,
discussed in S5POC VR. Also, the retrieval is less robust at high SZA and at
high VZA, which causes large error bars in the plots. This effect should be kept
in mind, when the algorithm is applied in high latitudes. In the investigated
Atlantic region, SZA are only moderately high and satellite pixels with high VZA
are often screened out by the cloud filter due to their larger pixel size.

In summary, the influence of atmospheric and surface parameterizations is
generally low on the K retrievals. Uncertainties increase with the difference
between conditions found for an actual satellite scene and the average ones used
in the simulated standard scenario. Largest uncertainties can be expected for
scenes with high aerosol loading, which only occur in specific regions and times
of the year (Remer et al., 2008). For the Atlantic region, Saharan dust storms can
have a significant influence (e.g., van der Does et al., 2016). Maritime aerosols
were investigated here, terrestrial dust might have even stronger impacts. These
critical scenes are largely removed through the strict cloud filter criterion used in
this study (cloud fraction of 0.01). In the future, the dimensions of the LUT can
be increased, when confidence in performance of K, retrievals has been gained
by comparison with larger in-situ data sets than available for this study. The total
ozone column, AOD, and wind speed can be included in the LUT and taken from
ancillary data (some variables also available from TROPOMI) to further reduce
uncertainty in TROPOMI K, data sets.

Il Oceanic parameters

The case-1 assumption is generally not valid in the UV domain. The ab-
sorption coefficient can not be accurately described using Chla (Vasilkov et al.,
2002; Morel et al., 2007). The influence of the case-1 parameterization used for
the optical constituents in the ocean on the ultraviolet K retrievals needs to
be checked carefully. As introduced in section 4.3, the case-1 parameterization
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for the visible wavelength range was used in combination with a recent pure wa-
ter absorption spectrum accurately measured for UV wavelengths Mason et al.
(2016). Nevertheless, the influence of the choice of water absorption spectrum
was assessed. A modified scenario was simulated with liquid water absorption co-
efficients from Pope & Fry (1997) which significantly differ at short wavelengths
from those measured by Mason et al. (2016), see Oelker (2021).

500
< +— ¢, by Pope and Fry, 1997
E 400 e e—e MAA absorption
;: o v—v CDOM coeff. = 0.1
= " == CDOM slope = 0.007 nm '
7 300 -
- »+—4 CDOM coeff. = 0.4
oy . _ 1
E 200 CDOM slope = 0.03 nm
2
G
= 100
S
g 0
=
o
© 100
- 2 1 0 1
10 10 10 10

KS®-UVAB

Figure 22: Deviation of K3®-UVAB as in the modified scenario from K,;-UVAB
in the standard scenario as function of K;XP—UVAB for tested variations in oceanic
parameter. Figure from Oelker et al. (2022b).

0.07
006
" 0.05
0.04
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0.02
0.01
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0'0900 350 400 450 500
wavelength [nm]

Figure 23: Phytoplankton absorption at Chla of 1 mg/m? in the standard (green)
and in the modified (blue) simulations (S9 from Bracher & Wiencke, 2000).

High uncertainty also lies within the settings for phytoplankton and CDOM
absorption. Presence of mycosporine amino acids (MAA) causes higher UV ab-
sorption than prescribed in the standard case-1 parameterization. MAA absorb
between 320 and 350 nm with a peak around 330 to 340 nm (Vernet et al.,
1994; Bracher & Wiencke, 2000). Presence of these UV-absorbing pigments
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should therefore mainly influence K;-UVAB (Wang et al., 2021). In the study by
Bracher & Wiencke (2000) different phytoplankton communities had been sam-
pled in the Southern Ocean. We have further analysed these data by normalizing
them to chl-a concentration. The results show that within similar phytoplank-
ton communities the specific absorption can vary by a factor 5.2 in the UV. A
modified scenario was simulated using a phytoplankton absorption spectrum with
medium MAA absorption (S9 from Bracher & Wiencke (2000), see Figure 23).
High variability can also be expected for the CDOM slope, 0.01 to 0.03 nm
(Vodacek et al., 1997) as compared to 0.014 nm™ in the standard case-1 sce-
nario. Modified RTM simulations were made with a reduced CDOM slope of
0.011 nm™ and an increased CDOM slope of 0.0194 nm™. Also the CDOM
absorption coefficient was increased and decreased two times, while keeping the
CDOM slope as constant equal to 0.0164 nm™.

lla Magnitude of CDOM absorption coefficient
The deviations of derived from expected K, caused by the variation of CDOM ab-
sorption coefficient magnitude are presented in Fig. 24 and Fig. 25 in the case of
two times increased and two times decreased absorption coefficient, respectively.
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Figure 24: Deviation of derived from expected K, in the case of two times
increased CDOM absorption coefficient. (a) K;-UVAB, (b) Ks-UVA, (c) Ky-
blue. Results were averaged for different zenith and azimuth angles with the
standard deviation given as errorbar.
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Figure 25: Deviation of derived from expected K, in the case of two times
reduced CDOM absorption coefficient. (a) K;-UVAB, (b) K;-UVA, (c) Ky-blue.
Results were averaged for different zenith and azimuth angles with the standard
deviation given as errorbar.

In order to understand obtained deviations we use the following approximation
for VRS signal (pseudo-absorption cross section) derived above, namely

Al

N o— 15
]_7 ( )

where AT is a contribution of inelastic process, I~ is the TOA radiance calculated
excluding inelastic process.

Taking into account that increasing of CDOM absorption leads to the decrease of
both Al and I~, one can expect both negative and positive signs of €. The results
presented in Fig. 24 in the case of two times increased absorption coefficient
confirm this assumption. In the case of two times decreased absorption coefficient
(see Fig. 25) one can see positive deviations for K;-UVAB and negative ones for
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K4-UVA at all expected values of K;. This demonstrate that in the forme case
effect of increasing AT is weaker than effect of increasing I~. In the later case
vice versa.

IIb Sensitivity with respect to slope of CDOM absorption coefficient

The deviations of derived from expected K, caused by the variation of CDOM
absorption coefficient slope are presented in Fig. 26 and Fig. 27 in the case of the
slope equal t0 0.0194 nm~"! and to 0.011 nm™1, respectively, which correspond to
the representation of CDOM absorption as absorption by pure fulvic or by pure
humic acid.
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Deviation of derived from expected K,; in the case of slope

0.0194nm~*. (a) K;-UVAB, (b) K4-UVA, (c) K4-blue. Results were averaged for
different zenith and azimuth angles with the standard deviation given as errorbar.
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Figure 27: Deviation of derived from expected K in the case of slope 0.011 nm~!.

(a) K4g-UVAB, (b) Ks-UVA, (c) Kg-blue. Results were averaged for different
zenith and azimuth angles with the standard deviation given as errorbar.

905 The deviations of derived from expected K, in the case of CDOM absorption
s coefficient according to (Morel & Maritorena, 2001) are presented in Fig. 28.
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Figure 28: Deviation of derived from expected K, in the case of CDOM absorp-
tion coefficient according to (Morel & Maritorena, 2001). (a) K4-UVAB, (b)
Ka-UVA, (c) Kg-blue. Results were averaged for different zenith and azimuth
angles with the standard deviation given as errorbar.

The lower right panel of Fig. 26 demonstrates the wavelength dependent

CDOM absorption coefficients corresponding to 3mg/m? chlorophyll concentra-
tion.
As can be seen from comparison of results presented in Fig. 27 and Fig. 25, the
decrease of slope leads to the similar effect as a decrease of absorption coeffi-
cient. Similar to that the comparison of results presented in Fig. 26 and Fig. 24
shows that the increase of slope leads to the comparable effect as a increase of
absorption coefficient. However, in both cases the magnitude of ¢ is smaller as
expected in the case of slope variations.

In the former version of this retrieval, the sensitivity to the pure sea water
spectrum has been investigated (Oelker et al. (2022b)). The change of using
the old water spectrum by Pope & Fry (1997) compare to the new on by Mason
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et al. (2016) results in an overestimation of 15% for clear water scenarios which
reduces to zero for high Chla scenarios. The overestimation is counter-intuitive,
since KJ® is higher than K5, A changed parameterization often also causes a
spectral change in K; which impacts the VRS fit quality and can result in this
unexpected behavior.

In conclusion, the K4-UV retrievals are rather insensitive to the chosen RTM
parameterization compared to the large variability that this parameterization
causes in K in the ultraviolet spectral range.

LUTs for oceanic parameters
In the framework of the sensitivity study we considered the deviations of the
derived from the expected K; caused by the variation of

e 1 - CDOM absorption coefficient magnitude in the case of two times in-
creased absorption coefficient;

2 - CDOM absorption coefficient magnitude in the case of two times de-
creased absorption coefficient;

3 - CDOM absorption coefficient according to Morel and Maritorena (2001);

4 - CDOM absorption coefficient slope in the case of the slope equal to
0.0194 nm~!, which correspond to the representation of CDOM absorption
as absorption by pure fulvic acid;

5 - CDOM absorption coefficient slope in the case of the slope equal to
0.011 nm~*!, which corresponds to the representation of CDOM absorption
as absorption by pure humic acid.

For each observation /illumination geometry the relative error was calculated ac-
cording to Eq. (5). Taking into account that the relative errors demonstrate
dependence on the selected geometry and VRS scaling factor, we have prepared
the LUT containing RMS error for all considered above variations of the CDOM
absorption coefficient calculated as

L ) (16)

where N = 5 in the case under consideration.

The obtained results for ¢ are presented in LUTs "RMS_lut_W1.oce”,
"RMS_lut_-W2.0oce”, and "RMS_lut_W3.oce” for "UVAB", "UVA", and "short-
blue” windows, respectively. The value of ¢ for selected observation /illumination
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geometry and retrieved VRS scaling factor can be obtained using interpolation
technique by the same manner as in the case of K using the main LUTs.

To demonstrate results summarized in RMS errors LUTs let us consider figures
29 - 31. These figures show RMS errors of K; UVAB, UVA, and short-blue,
respectively, for all viewing and solar angles (except of solar zenith angle 70°)
and four selected concentrations of chlorophyll: 20 mg/m?, 8 mg/m3, 0.7 mg/m3
and 0.003mg/m?.

5 . . . .
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2 2 : [ : '
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Figure 29: RMS errors of K; UVAB for all viewing and solar angles ( except of
solar zenith angle 70°) and four selected concentrations of chlorophyll. Upper
panel: left - 20 mg/m?; right - 8 mg/m3. Lower panel: left - 0.7 mg/m?; right -
0.003mg/m?3.
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Figure 30: RMS errors of K,; UVA for all viewing and solar angles ( except of
solar zenith angle 70°) and four selected concentrations of chlorophyll. Upper
panel: left - 20 mg/m3; right - 8 mg/m?3. Lower panel: left - 0.7 mg/m?3; right -

0.003mg/m?3.
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Figure 31: RMS errors of K, short-blue for all viewing and solar angles ( except
of solar zenith angle 70°) and four selected concentrations of chlorophyll. Upper
panel: left - 20 mg/m3; right - 8 mg/m?>. Lower panel: left - 0.7 mg/m?3; right -
0.003mg/m?3.

Il Impact of interpolation of K; LUTs values
Taking into account that a measured VRS fit factor can be obtained for solar and
viewing angles which do not coincide with the angle grids of LUTs, one needs
to interpolate Kd LUTs values. In order to estimate interpolation errors we have
calculated TOA radiances using shifted angles grid. The following subsections
present results obtained using the shift of solar, viewing zenith, and azimuth
angles.
In general, one needs to keep in mind that the main LUTs were precalculated
for discrete number of solar, viewing zenith, and azimuth angles. In follows the
variable €, == {0, V;, ¢x}, which comprises these three angle variables, will
be used. In particular,
Yoi, © = [1,2,...,13] represents discrete number of solar angles, [10, 15, 20,. ..
,70]
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Y, 7 = [1,2,...,15] represents discrete number of zenith angles, [0, 5, 10,
..., 70],

vk, k =1[1,2,...,5] represents discrete number of azimuth angles, [0, 45, 90,
135, 180].

For selected three angles the LUT can be represented from mathematic point of
view as a nonlinear relationship:

—

Ko(Qije) = @[Su(Qu)] . (17)

where ® is a nonlinear mapping, vectors §U(Qijk) and l?d(Qijk) consist of 22
components of VRS fit factors and attenuation coefficients, respectively, cor-
responding to different concentrations of chlorophyll, 22 values of which were
selected as [0.0, 0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 0.7, 0.8, 1.0,
1.5, 2.0, 3.0, 5.0, 8.0, 10.0, 15, 20, 30].

Illa Shift of solar zenith angle
The shifted solar grid has been selected as follows: [12.5, 17.5, 22.5, ..., 67.5],
and VRS fit factors, S,, were calculated employing standard DOAS fit. Further
we have assumed that for a selected shifted solar angle Uo;, which is located in
[Yoi, Yoit1] range, the relationship between K; and solar angle can be represented
as a linear relationship:

Ka(901) = adp; + b, Do € (Do, Yoiy1) - (18)

The coefficients a and b are given by

Ka(Qji) Y041 — Ka(Qiyjn) Yoi
Yoi+1 — Vo '

 Ka(Qigagr) — Ka(Qij) B
a = , b=
790’5-&-1 - ﬁOi

(19)

Here, [N(d(Qijk) is calculated using a linear interpolation according to the following
IDL INTERPOL function:

log K4(Qijx) = INTERPOL(V;, X;, XOUT) , (20)

where V; = log K4(Qji), Xi = log S,(Qjx), and XOUT = log S,(Jy;). The
log K4(£2i41) value is obtained setting subscript i + 1 instead of 7 in Eq. (20).

The calculations of Kd(1§0i) were performed for each selected 1%1- from shifted
angles grid, and combination of all viewing zenith, azimuth angles and chlorophyll
concentrations. Figs. 32 show relative deviation of derived Kd(q%i) from expected
Ky for K; -UVAB, K; -UVA, and Ky -blue, respectively, for selected shifted solar
angles.
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Figure 32: Deviation of derived from expected K, in the case of 2.5° shift of
the solar zenith angles. Results were averaged for different zenith and azimuth
angles with the standard deviation given as errorbar.

The deviations of derived from expected K; caused by interpolation of solar

zenith angle are summarized in LUTs "Err_lut W1.shi", "Err_lut_'W2.shi", and
"Err_lut_-W3.shi” for "UVAB", "UVA" and "short-blue", respectively.
In particular, the column 6 in these files contains the relative errors [%] caused
by usage of 2.5° shifted solar angles in contrast to solar angles used in the main
LUTs for K,. The results of this column enable to obtain maximal error caused
by interpolation with respect to solar zenith angle. We note that for a solar
zenith angle 0, € (J0i, Joi+1) the maximal interpolation error is saved in LUTs
corresponding to the solar zenith angle ;..

I1Ib Shift of viewing zenith angle
The shifted grid of viewing zenith angles has been selected as follows: [2.5, 7.5,
12.5,..., 67.5], and VRS fit factors, S,, were calculated employing standard
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DOAS fit. Simmiilar to the shift of solar angles grid we have assumed that
for a selected shifted zenith angle 151-, which is located in [¢;,9;,1] range, the
relationship between K,; and zenith angle can be represented as a local-linear
relationship:

Kd<1§z> = Ay lgl + bﬂ y lgl € (ﬁi,ﬁprl) . (21)

The coefficients ay and by are given by

Ka(Qijiir) — Ka(Qjr) by — Ka(Quji) 9541 — Ka(Qujn) 9,
Vi1 — 9, ’ Vi1 — 9, '

(22)

ay =

Here, lN(d(Qijk) is calculated using a linear interpolation similar to Eq. (20),
where, however, XOUT = log S,(1);). The log K4(Qij41x) value is obtained
setting subscript j + 1 instead of j in Eq. (20).

The calculations of Kd(i%) were performed for each selected 1§2 from shifted
zenith angles grid, and combination of all solar, azimuth angles and chlorophyll
concentrations. Figs. 33 show relative deviation of derived K4(1) from expected
Ky for Ky -UVAB, Ky -UVA, and K, -blue, respectively, for selected solar angles.
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Figure 33: Deviation of derived from expected K, in the case of 2.5° shift of
viewing zenith angles. Results were averaged for different zenith and azimuth
angles with the standard deviation given as errorbar.

1021 The deviations of derived from expected K; caused by interpolation of VZA
1022 are summarized in LUTs " Err_lut_'W1.shi", "Err_lut_'W2.shi", and " Err_lut_'W3.shi"
023 for "UVAB”, "UVA", and "short-blue”, respectively.

w024 In particular, the column 7 in these files contains the relative errors [%] caused by
w25 usage of 2.5° shifted VZAs in contrast to viewing angles used in the main LUTs
w2 for K. The results from this column enable to obtain maximal error caused
w27 by interpolation with respect to VZA. We note that for a viewing zenith angle
s 1U; € (9;,9;41) the maximal interpolation error is saved at LUT corresponding
w20 to VZA 19]'.

1030 Illc Shift of azimuth angle
s The shifted grid of azimuth angles has been selected as follows: [22.5, 67.5,
02 112.5, 157.5], and VRS fit factors, S,,, were calculated employing standard DOAS
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fit. Similar to the shift of solar angles grid we have assumed that for a selected
shifted azimuth angle ¢;, which is located in [¢;, ¢;11] range, the relationship
between K, and azimuth angle can be represented as a linear relationship:

Ka(pi) = ap @it by, @i € (pi, piv1) - (23)
The coefficients a, and b, are given by

o — f(d(Qiij) - f(d(Qz’jk) b — f(d(Qz’jk) Pk+1 — f(d(Qz’ij) Pk
2 ) p — .

Pr+1 — Pk Pr+1 — Pk

(24)

Here, K4(Qu;:) is calculated using a linear interpolation similar to Eq. (20),
where, however, XOUT = log S,(¢;). The log f(d(Qiij) value is obtained
setting subscript k + 1 instead of k in Eq. (20).

The calculations of K;(p;) were performed for each selected ; from shifted
angles grid, and combination of all zenith, azimuth angles and chlorophyll con-
centrations. Figs. 34 show relative deviation of derived K (@) from expected K
for K; -UVAB, K; -UVA, and K, -blue, respectively, for selected shifted azimuth
angles.
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Figure 34: Deviation of derived from expected K in the case of 22.5° shift of
azimuth angles. Results were averaged for different zenith and azimuth angles
with the standard deviation given as errorbar.

The deviations of derived from expected K; caused by interpolation of az-

imuth angle are presented in LUTs "Err_lut W1.shi”", "Err_lut_'W2.shi", and
"Err_lut_ W3.shi” for "UVAB", "UVA", and "short-blue”, respectively.
In particular, the column 8 in these files contains the relative errors [%] caused
by usage of 22.5° shifted azimuth angles in contrast to azimuth angles used in
main LUTs for K;. The results from this column enable to obtain maximal error
caused by interpolation with respect to azimuth angle. We note that for an
azimuth angle @y € (¢, pr+1) the maximal interpolation error is saved at LUT
corresponding to the azimuth angle ¢y,.
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6.2 Comparison to multispectral ocean color products

S5P ocean color product quality is estimated using triple collocation method as
in Losa et al. (2017). Following data sets are used for the different products:

e S5P K, blue, OLCl K, 490 (empirical, Morel et al., 2007), OC-CCl K,
490 (IOP-based, Lee et al., 2005)

More details on the multispectral products can be found in the S5POC VR.

6.2.1 Triple collocation

The triple collocation (TC) method (Stoffelen, 1998; Losa et al., 2017) allows

to estimate the absolute error variances (02)), also called root mean squared

difference (RMSD), of three collocated data sets with unknown uncertainties
and with uncorrelated errors. The 02 can be estimated from the unique terms

=

covariance matrix (MCCO” et a/., 2014) (Qllv ng, ng, QQQ, Q23,Q33):

_ Q12Q13
Qll Q23
o2 = (22 — _ng);g (25)
_ Q13Q23
Q33 Q12

Following Gruber et al. (2015) the fractional mean-squared-error (fMSE) can
be calculated within the frame of the TC analysis:

o2 1 1
MSE; = %5 — _ ,
/ o} plog+0: 1+ SNR;

7

(26)

where [3; is a systematic bias of a particular data product with respect to the true
state ©; o7 and o?, denote the product variance and the product error variance,
respectively. SN R; is a signal-to-noise ratio. This fMSE criterion allows one to
evaluate the plausibility of the TC based K; uncertainty estimates. All details on
the K, triple collocation results can be found in the S5 POC-VR (sections 6.1.5
to 6.1.8).

6.3 in-situ data

see section 7.
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o« Validation

w7 Table 1 summarizes information on in situ observations collected during cruises
s (PS113, PS121, MSM93) and surveys (FOCUS) in the test areas (Figure 2
w9 in SSPOC-RB, Figure Al in S5POC-DP-AUM2) and used for S5POC product
80 Vvalidation for the years 2018 to 2020. All details on the in validation results can
s be found in section 6.1.5 to 6.1.8 of the SbPOC-VR (Bracher et al., 2022b).

Table 1: In situ observations used for SSPOC evaluation.

Observation name observation description cruises/survey test area

Ky Light attenuation PS113, PS121, MSM93 C, D

w2 (.1 Match-up analyses

133 Collocations between In situ and S5POC products were defined differently for
3 the products. Match-ups between geolocation of in situ and TROPOMI ground
s pixels for SSPOC K, data were calculated using a loose criterion (within two days
wss  of the TROPOMI pixel) given the low number of regional available K, in situ
g7 station data (in total 36 station data regional well distributed) complemented by
wss about 450 Triaxus data. For each in situ measurement, TROPOMI match-ups
8o were searched within 2 days and a radius of 5.5 km resulting in 45 (only 43 for
o UVAB) quality controlled matchups. For details see section 6.2.2 of the Bracher
woa et al. (2022b).

1002 The match-up statistics are quantified by the metrics described in the OC-
w3 CCl Product User Guide (issue 2.0.5). The metrics includes RMSD, un-biased
e  RMSD, bias, slope, intercept (type Il regression) and Pearson coefficient of de-
wos termination. In addition, the mean absolute error (MAE) is quantified. The
1906 Mmetrics are computed as:

N
1
RMSD — N;(gﬁ—xi)z (27)
|
-biased RMSD = , | — Y, — X;)? 2
Un-biase S N;( : i) (28)
|
Bias = — P — & 2
las = 2 (y; — ;) (29)
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N
1
MAE = N ; |yi — ] (30)

where x is the in situ observation, y the satellite data, and N the total number
of samples. X corresponds to = — mean(x) and analogous definition applies to
Y. For PFT-CHL for the calculation of slope, intercept (type Il regression) and
Pearson coefficient of determination the PFT-CHL from in situ and TROPOMI
are compared on LoglQ scale. More details on the in situ matchup results can
be found in sections 6.1.2 and 6.2.2 of S5POC-VR (Bracher et al., 2022b)).
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